Q. List and explain each of the ACID properties that collectively guarantee that database transactions are processed reliably.

A. ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties that guarantee that database transactions are processed reliably. They are defined as follows:

Atomicity. Atomicity requires that each transaction be “all or nothing”: if one part of the transaction fails, the entire transaction fails, and the database state is left unchanged. An atomic system must guarantee atomicity in each and every situation, including power failures, errors, and crashes.

Consistency. The consistency property ensures that any transaction will bring the database from one valid state to another. Any data written to the database must be valid according to all defined rules, including constraints, cascades, triggers, and any combination thereof.

Isolation. The isolation property ensures that the concurrent execution of transactions results in a system state that would be obtained if transactions were executed serially, i.e., one after the other. Providing isolation is the main goal of concurrency control. Depending on concurrency control method (i.e. if it uses strict – as opposed to relaxed – serializability), the effects of an incomplete transaction might not even be visible to another transaction.

Durability. Durability means that once a transaction has been committed, it will remain so, even in the event of power loss, crashes, or errors. In a relational database, for instance, once a group of SQL statements execute, the results need to be stored permanently (even if the database crashes immediately thereafter). To defend against power loss, transactions (or their effects) must be recorded in a non-volatile memory.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s